
© 2019 CalSAWS. All Rights Reserved. 
 

 

 

 
 
 

CalSAWS 
California Statewide Automated Welfare System 

 

Design Document 
 

CA-213257 

Build Streams Architecture for Batch 
  



© 2019 CalSAWS.  All Rights Reserved. 
2 

 

CalSAWS 

 

DOCUMENT APPROVAL HISTORY 
Prepared By Kevin Hooke 

Reviewed By [individual(s) from build and test teams that reviewed 
document] 

 

DATE DOCUMENT 
VERSION REVISION DESCRIPTION AUTHOR 

02/07/2020 1 Initial Revision Kevin Hooke 
02/10/2020 2 Updated few sections Milind Nirgun 

03/06/2020 3 Updated class diagram and added 
sequence diagrams Kevin Hooke 

    
    
    
    
    
    

 

 
  



© 2019 CalSAWS.  All Rights Reserved. 
3 

 

Table of Contents 
1 Overview ........................................................................................................................... 4 

1.1 Current Design ........................................................................................................... 4 

1.2 Requests ..................................................................................................................... 4 

1.3 Overview of Recommendations .............................................................................. 4 

1.4 Assumptions ............................................................................................................... 5 

2 Recommendations ........................................................................................................... 6 

2.1 Streams Processing Architecture ............................................................................. 6 

2.1.1 Overview ........................................................................................................ 6 

2.1.2 Class Diagram ................................................................................................ 7 

2.1.3 Class Descriptions .......................................................................................... 7 

2.1.4 Sequence Diagrams ...................................................................................... 9 

2.1.5 Impacts to Existing Batch Architecture / Batch Jobs .................................10 

2.1.6 Execution Frequency ....................................................................................10 

3 Supporting Documents ...................................................................................................11 

4 Requirements ...................................................................................................................12 

4.1 Project Requirements ...............................................................................................12 

4.2 Migration Requirements...........................................................................................12 

5 Migration Impacts ...........................................................................................................13 

6 Outreach ..........................................................................................................................14 

7 Appendix..........................................................................................................................14 

 
  



© 2019 CalSAWS.  All Rights Reserved. 
4 

1 OVERVIEW 
This document outlines the technical design for the architecture framework to support 
refactoring existing Batch jobs to use an event-driven, Streaming approach. This 
architecture framework is the basis for building new Streaming applications. 

1.1 Current Design 
The current Batch job design follows a traditional batch processing pattern: a 
driving query selects rows to be processed, then processing logic is invoked for 
each of the returned rows. An architecture BatchDriver is used as the ‘job runner’. 
Each Batch job implements an architecture interface called BatchModule, which 
provides processing lifecycle methods, launch(), execute(), terminate(), which are 
called by the BatchDriver and supporting architecture framework. 

1.2 Requests 
As the CalSAWS system is expanded to include all California counties, the volume 
of data to be processed during each nightly batch window by certain Batch jobs 
is projected to run longer than the time available. An alternative processing 
solution is needed to ensure that daily batch processing completed within the 
batch window and meets SLA requirements. 

1.3 Overview of Recommendations 
1. The operations and support processes for the current Batch architecture are 

well defined and tested. The startup of the new Streams Processing 
applications should be automated. Even though they can run indefinitely, 
designing a runtime architecture for the new Streams processing apps that 
can take advantage of current operations processes will be an easier 
transition from the current traditional Batch processing approach to a new 
Streams processing approach. This Streams Processing architecture will allow 
for the Streams applications to be started and terminated as needed by the 
existing Batch scheduler. 
 
 

2. Running the Streams Processing applications via the existing Batch Scheduler 
will allow any log output from the new applications to be captured as batch 
logs, similarly to how job logs are captured today. This enables the Batch 
Operations team to consistently manage and monitor all Batch operations 
regardless of their type.  

 
 

3. Build a runtime Streams architecture framework that provides a similar 
launch(), execute(), terminate() template that is familiar to existing Batch 
developers, and also provides Kafka specific setup and configuration that will 
be common for each Streams application. 
 



© 2019 CalSAWS.  All Rights Reserved. 
5 

 
4. Use the Apache Avro serialization framework, to take advantage of 

a. Compressed, binary messages for lower bandwidth usage 
b. Schemas that define the content of each message, and support 

changes to the message structure providing inherent backward 
compatibility with previous versions. 

 
5. Provide a framework for processing changes in the application data in near 

realtime as they happen in the online transaction system. This method, called 
Stream Processing, processes smaller chunks of data throughout the day as 
opposed to processing the full days’ worth of data changes during nightly 
batch using a traditional Batch Processing approach. 
 

 

1.4 Assumptions 
1. Continual processing of smaller volumes of data throughout the day by a 

Streams processing application on a near-realtime basis will not have a 
functional impact on the Online system. The Streams jobs will be designed to 
ensure any functional impacts are avoided (for example, using the Case Lock 
functionality). 
 

2. Existing Batch jobs that are targeted for migration to this new framework will be 
redesigned to take advantage of processing data on a near-realtime basis, 
and changed to handle any consequences from this fundamental change in 
approach. 

 
 

 

  



© 2019 CalSAWS.  All Rights Reserved. 
6 

2 RECOMMENDATIONS 
This section describes the design for the Streams Architecture Framework. 

2.1 Streams Processing Architecture 

2.1.1 Overview 
The Streaming Architecture support classes provide support for developing and running 
Streams application. 
  



© 2019 CalSAWS.  All Rights Reserved. 
7 

2.1.2 Class Diagram 
 
 
 

 

2.1.3 Class Descriptions 
 
StreamsDriver 

- Provides the runtime entry point for a Kafka Streams API or Kafka Consumer API 
Application. Invoked by the Batch Scheduler with class name of the application 
Module to start executing. 

 

 
Streams Architecture classes 

 
Application implementation 
classes 



© 2019 CalSAWS.  All Rights Reserved. 
8 

StreamsModule 
- Abstract class implemented by functional application where Kafka Streams API 

usage is needed 
- Application provides implementations for: 

o launch() – initialization and setup for the Streams application 
o create() – creates the StreamsBuilder for the Stream topology 
o terminate() – teardown and cleanup logic for the Streams application 

 
ConsumerModule 

- Abstract class implemented by functional application where Kafka Consumer 
API usage is needed 

- Application provides implementation for: 
o execute() –Consumer API usage by functional application 

 
ErrorHandlngMessageProcessor 

- A wrapper for functional application MessageProcessor implementations that 
provides standard error handling approaches. Also provides a location where 
additional common error handling approaches can be added as needed. 

- Each of the provided handlers wrap the application’s 
MessageProcessor.processor() method 

o processSkipOnException() – catches and logs exceptions, then continues 
processing next message 

o processSendToDLTOnException() – catches exceptions and forwards the 
message that caused the exception to a ‘Dead Letter Topic’ for later 
followup and triage (or additional error handling processing in another 
Streams application) 

 
MessageProcessor 

- Interface providing the process() method. Functional application 
implementations of this interface provide the business logic to handle a message 
from a source Topic or Stream. MessageProcessor implementations are intended 
to be independent of Kafka and Kafka library dependencies, which means the 
logic is easily unit tested outside of the Streams application itself. 
 

  



© 2019 CalSAWS.  All Rights Reserved. 
9 

2.1.4 Sequence Diagrams 

2.1.4.1 Sequence diagram for StreamsModules 

 
  



© 2019 CalSAWS.  All Rights Reserved. 
10 

2.1.4.2 Sequence diagram for ConsumerModules 

 

2.1.5 Impacts to Existing Batch Architecture / Batch Jobs 
The new Streaming architecture classes have no impact on the existing Batch 
architecture classes as they do not change any dependencies and are designed to be 
used in parallel to the existing Batch architecture. 

This new Streams architecture can be deployed in production along with the existing 
Batch architecture and it only gets used by the new Streams processing jobs when they 
are deployed. 

 

2.1.6 Execution Frequency 
No impact. This will be configured for the application classes using the 
Streaming architecture. 

  



© 2019 CalSAWS.  All Rights Reserved. 
11 

3 SUPPORTING DOCUMENTS 
None. 
 

Number Functional 
Area 

Description Attachment  

    

    

 

  



© 2019 CalSAWS.  All Rights Reserved. 
12 

4 REQUIREMENTS 

4.1 Project Requirements 

REQ # REQUIREMENT TEXT How 
Requirement 
Met 

   

   

 

4.2 Migration Requirements 

DDID # REQUIREMENT TEXT Contractor 
Assumptions 

How 
Requirement 
Met 

    

    

 
 
  



© 2019 CalSAWS.  All Rights Reserved. 
13 

5 MIGRATION IMPACTS 
None.  

  



© 2019 CalSAWS.  All Rights Reserved. 
14 

6 OUTREACH 
None. 

7 APPENDIX 
None. 


	CA-213257 Build Streams Architecture for Batch
	1 Overview
	1.1 Current Design
	1.2 Requests
	1.3 Overview of Recommendations
	1.4 Assumptions

	2 Recommendations
	2.1 Streams Processing Architecture
	2.1.1 Overview
	2.1.2 Class Diagram
	2.1.3 Class Descriptions
	2.1.4 Sequence Diagrams
	2.1.4.1 Sequence diagram for StreamsModules
	2.1.4.2 Sequence diagram for ConsumerModules

	2.1.5 Impacts to Existing Batch Architecture / Batch Jobs
	2.1.6 Execution Frequency


	3 Supporting Documents
	4 Requirements
	4.1 Project Requirements
	4.2 Migration Requirements

	5 Migration Impacts
	6 Outreach
	7 Appendix


