

C A L S A W S M & O S E R V I C E S R F P # 0 1 - 2 0 2 2
Volume 1B – M&E Business Proposal, Part 1

Deloitte 2023 Understanding and Approach to M&E Services Section 4 Page 4-3

prevents the complication of replicating data between databases for different parts of
the application, allowing changes to underlying data structures to occur transparently
to the legacy application. Another advantage to the modernized shared database
comes with reduced complexity. Fewer database instances require less management.
The only remaining data synchronization uses the ability to automate full or logical
replication (table-by-table) to make a replica of the database for read-only access to
synchronize to the reporting repository. Using dedicated read-only replicas that can be
recreated on demand allows the data to be more rapidly synchronized for reporting by
dedicating resources to it. We take advantage of the automation and improved data
quality we create using the modernized database and provide increased velocity in
the replication and transfer of data to the reporting system. As we develop each
feature module, we apply the first of the four pillars:

Applying Incremental Application Evolution (Pillar 1)
As we transform CalSAWS into microservices, we employ a “Strangler Fig” pattern to the
legacy architecture, shown in Figure 4.2.2-2. The “Strangler Fig” pattern is modeled on
the Strangler Fig Tree that grows around another tree and eventually strangles it out or
replaces it. This pattern allows us to incrementally create the new application services
while still using the legacy CalSAWS monolith application.

Figure 4.2.2-2. How We Enable Co-Existence During Evolution with the Strangler Fig.

Business functions are refactored as a new service with a well-defined API. In the legacy
application, the old logic is replaced by a wrapper directing requests to the new
service. Figure 4.2.2-3 provides a before view of using the strangler fig pattern for
Application Registration (AR), Data Collection (DC) and Eligibility Determination (ED)
capabilities.

Figure 4.2.2-3. Example: Application Registration Prior To Strangler Fig.

Figure 4.2.2-4 below shows how we balance modernized Application Registration
services with Data Collection and Eligibility Determination still running as legacy
applications while functionality stays synchronized and integrated using API
communications between the legacy and modernized application. The legacy
monolith application and the separated microservices share the modernized cloud

C A L S A W S M & O S E R V I C E S R F P # 0 1 - 2 0 2 2
Volume 1B – M&E Business Proposal, Part 1

Deloitte 2023 Understanding and Approach to M&E Services Section 4 Page 4-4

native database and take advantage of different schemas and permissions to manage
module ownership of the data over time.

Figure 4.2.2-4. Example: Co-Existing AR Microservices and Legacy Applications.

Implementing incremental change evolution necessitates careful planning and
execution. This confirms the prevention of conflicts between business and technical
changes, while enabling their harmonious coexistence. While reviewing the plan for
new business functionality and identifying the domain areas we are modularizing, we
establish the capacity for evolved services to operate completely independently from
the legacy application. To initiate the process, we begin by constructing a strong
foundational architecture through the design and implementation of core services.
These services encompass vital application architecture elements such as exception
handling, application logging and tracing, error management, configuration
management, and security. These components serve as the building blocks upon which
developers construct other elements within the new architecture. We create other
utility functions (e.g., cache management, date management, data validations) that
can be used across the microservices. The functional microservices leverage this
building framework to completely decouple themselves from the monolith throughout
the SDLC.

Next, we apply the Strangler Fig pattern by lifting the relevant code for a module out of
the monolith to build a standalone service, introducing APIs to access the service and
then evolving the data access layer to improve the structure of the database. Because
we did cloud native database migration first, we have a thorough understanding of the
database tables and relationships and know where we will need to introduce APIs in
the monolith. We also understand where the logical responsibilities for data
management and ownership correlate to specific modules. This decreases risk during
the evolution because we do not need make business code changes. This initial
independent service is tested for parity with the previous release, through the
integration with the remaining monolith executable.

In parallel, a different team takes the same starting code base and makes the
functional changes necessary to create new features needed by the business. This
approach allows each team to make and test their changes on a stable base before
combining the changes and retesting.

This implementation requires tight communication and collaboration across teams,
disciplined change identification and grouping/sequencing of like changes which are

C A L S A W S M & O S E R V I C E S R F P # 0 1 - 2 0 2 2
Volume 1B – M&E Business Proposal, Part 1

Deloitte 2023 Understanding and Approach to M&E Services Section 4 Page 4-7

Parallel Change Management: Database
We have a proven database change management process that enables us to
manage parallel databases (one for legacy environment, one for the modernized
environment). Database changes are completed through database scripts that are
also checked into the source code repository. The database changes are correlated to
specific code versions and tagged into the same baselines and releases. For example,
when we embark on the technology modernization journey there will be three parallel
streams of work: 1) CalSAWS application modernization into microservices, 2) CalSAWS
DB modernization, and 3) CalSAWS functional changes. Our processes merges
database changes across the three streams at the right time to allow the application to
function smoothly without disruption.

We use logical separation through the evolution process to reduce the need for data
replication. When there is a database change needed for a specific phase of the
evolution, changes are thoroughly tested with the merged code to verify that data
access has been isolated using the data access layer. The industry patterns we use to
mitigate the impact of this kind of change includes Natural Keys, Literal Keys,
Hexagonal, Façade, Anti-Corruption, and CQRS patterns. Which pattern is used
depends on the business domain object that is being addressed, its rate of change, the
module responsible for it and the business requirements.

Parallel Change Management: Infrastructure
While the code and database evolve, the underlying infrastructure will also evolve to
take advantage of more cloud services and simplified, lighter weight tools. There will be
upgrades and patches that get applied to legacy infrastructure, and infrastructure
changes that will get applied on the new technology modernization environment. We
work with the infrastructure vendor from architecture through design to create the
modernized and evolved cloud infrastructure architecture jointly to support the
application evolution. Making sure the infrastructure changes are clearly documented
and requested, correctly applied and migrated across environments requires close
coordination and ongoing collaboration with the infrastructure vendor. Changes will
also include security changes as we build and apply zero-trust principles.

We work collaboratively with the infrastructure vendor to make sure the infrastructure
changes are sequenced with the corresponding code changes (as applicable) and
application release. For example, when the implementation of database
modernization is underway, the required legacy DB upgrades would only be applicable
to environments that do not have the new upgraded DB code and are scheduled for
releases prior to database migration or evolution. This includes upgrading production
legacy database as well for any patches that require remediation (e.g., security
vulnerability patch). On the flip side, a patch for the evolved DB would only be applied
to environments that have evolved DB code or environments slated for later releases
after the database evolution. This type of patch will go to PROD, with the evolved DB
release.

As we evolve the code, database, and infrastructure we will account for the
integration considerations included in Table 4.2.2-1.

C A L S A W S M & O S E R V I C E S R F P # 0 1 - 2 0 2 2
Volume 1B – M&E Business Proposal, Part 1

Deloitte 2023 Understanding and Approach to M&E Services Section 4 Page 4-10

gathered with each incremental release throughout the year and encompass metrics
spanning startup times to response performance of application modules.

4.2.2.4 Other Factors Including Security Controls
Security controls that include data security, network security, and access controls are
implemented to mitigate security risks and threats. These include controls such as:

• Encrypting data in-transit and in-use with a minimum Transport Layer Security (TLS)
v1.2 and Advanced Encryption Standards (AES) cipher suites using only trusted digital
certificates to enable secure communication between the assets.

• Encrypting data at-rest by the selected AWS database services at the disk level using
Federal Information Processing Standards (FIPS) 140-2 guidelines.

• Disabling open ports and blocking unsecure ports to minimize the threat surface area.

• Logging and monitoring database activities for suspicious activity (e.g., repeated
invalid login attempts, database instance creations, command errors/exceptions).

• Securing customer managed keys (CMK) with AWS Key Management Service (KMS)
with a key management lifecycle to monitor and enforce separation of duties.

• Configuring security groups using the principle of least privilege.

• Segregating data between production and non-production databases with controls
applicable to an operations copy of the production database.

• Implementing data retention and archive based on Consortium security policies.

