_ova’ M&O SERVICES RFP #01-2023

olume 1B — M&E Business Proposal, Part 1

Understanding and
Approach to M&E
Services

Section 4

Understanding and Approach topics outlined in Section 5.3.
Bidders will respond to the following areas to satisfy or exceed
the RFP requirements as described in Section 5 - Requirements,
addressing the following topics:

Sub-Section 5.3.3.1 - Infegrated Multi-Contractor
Environment

Sub-Section 5.3.3.2 - Application/Architecture Evolution
Sub-Section 5.3.3.3 - System Change Requests
Sub-Section 5.3.3.4 - Innovation

Sub-Section 5.3.3.5 - Transition-In

By “coloring oulside the lines” with Deloitte, the CalSAWS
Consortium can deliver County-requested changes faster,
provide better integration across vendors, and deliver a
next-generation CalSAWS’ architecture. To help the
Consortium rethink the status quo, we bring a fresh
perspective informed by delivering 31 Eligibility and
Enroliment (E&E) systems, including California. This
experience enables us to implement improved MAE
processes via user-centered desigh and enabling
fechnologies (as we have demonstrated on both the
BenefitsCal project and the operation of CalHEERS for
Covered Cadlifornia).

Consorfium

Helping the

oufside
the lines

An M&E approach informed
by current E&E delivery
projects in 246 states.

An approach that puts
humans in the center rather
than technology.

An evolved CalSAWS
architecture that delivers
higher levels of
responsiveness while retaining
stability.

An approach that helps the
Consortium color outside the
lines to better serve California
Counties.

Processes and tools that
accelerate delivery of System
Change Requests (SCRs).

The End Result: The Consortium obtains a responsive,
reliable, and innovative vendor that leverages
national experience and technical knowledge that

supports the Counties with their mission to provide
timely health and human services.

4.2.2 Maintaining Legacy Architecture (ME-UA5)

RFP Reference: 5.3.3.2 - M&E Understanding and Approach to Application Evolution

ME-UAS5 Describe how you will maintain the legacy architecture during evolution, how
platforms and how data will be kept in-sync, how changes will integrate with existing
technologies and networks, how changes will be tested, and any other factors to be
addressed, including security.

CalSAWS, and more importantly County business conftinuity, is critical throughout the
application / architecture evolution. Our approach enables the legacy CalSAWS and
CalSAWSEN to co-exist, while keeping the modernized modules and the legacy codes
synchronized and integrated. We selected to migrate the database first to a cloud-
native platform to prevent the need for data replication during the changes to the
application code. Modernizing the data first into a cloud native database keeps the
data in sync naturally and enables the delivery of a stable and reliable combined
system to the Counties with data decoupled from the application through data access
layers that are aligned to the target state. The process for decoupling and migrating the
data will also improve the current data quality and provide improved reporting. During
the database/data access changes and throughout the application evolution, we use
the four pillars in Figure 4.2.2-1 to execute a “no to low disruption” approach while
evolving CalSAWS to cloud native, CalSAWSEN,

Incremental P
ApplicationEvolution
Implement system Implement parallel g Vdlidate the
modernization change control modernized
following the strategy to allow application by
strangler fig pattern, existing business performing parallel
thereby reducingrisk operations and festing to prevent
and redlizing the enhancements fo any loss of
benefits of early continue while functionality
modernization modernizing the between the legacy
code and modernized
application
| E

Figure 4.2.2-1. Four Pillars for Evolving and Maintaining Legacy Architecture.

At a high level, these pillars work together to create two independent workstreams, one
for new enhancements and one for application evolution, executable by separate
teams. Each workstream goes through complete functional and performance test
cycles before merging. Then, a third functional and performance test cycle is
conducted tfo verify the combined results of the changes. The emphasis on stability and
festing has enabled us to succeed with this approach on multiple projects. We have
improved our approach by applying it to real projects. This allows us to enhance
functionality while evolving the application's architecture simultaneously with minimal
risk. The remainder of this section discusses in more detail how the first three pillars align
to, and support, the Consortium’s objectives outlined in ME-UAS (i.e., keeping platforms
in-sync, integrating existing technologies, testing changes, and security).

4.2.2.1 Keeping Platforms and Data Synchronized
Synchronizing the legacy and modernized platforms requires an understanding of the
end-state architecture and sequence of the application evolution. This approach also

prevents the complication of replicating data between databases for different parts of
the application, allowing changes to underlying data structures to occur transparently
to the legacy application. Another advantage to the modernized shared database
comes with reduced complexity. Fewer database instances require less management.
The only remaining data synchronization uses the ability to automate full or logical
replication (table-by-table) to make a replica of the database for read-only access to
synchronize to the reporting repository. Using dedicated read-only replicas that can be
recreated on demand allows the data to be more rapidly synchronized for reporting by
dedicating resources to it. We take advantage of the automation and improved data
quality we create using the modernized database and provide increased velocity in
the replication and transfer of data to the reporting system. As we develop each
feature module, we apply the first of the four pillars:

Applying Incremental Application Evolution (Pillar 1)

As we fransform CalSAWS into microservices, we employ a “Strangler Fig” pattern to the
legacy architecture, shown in Figure 4.2.2-2. The “Strangler Fig" pattern is modeled on
the Strangler Fig Tree that grows around another free and eventually strangles it out or
replaces it. This pattern allows us to incrementally create the new application services
while still using the legacy CalSAWS monolith application.

Figure 4.2.2-2. How We Enable Co-Existence During Evolution with the Strangler Fig.

Business functions are refactored as a new service with a well-defined API. In the legacy
application, the old logic is replaced by a wrapper directing requests to the new
service. Figure 4.2.2-3 provides a before view of using the strangler fig pattern for
Application Registration (AR), Data Collection (DC) and Eligibility Determination (ED)
capabilities.

Figure 4.2.2-3. Example: Application Registration Prior To Strangler Fig.

Figure 4.2.2-4 below shows how we balance modernized Application Registration
services with Data Collection and Eligibility Determination still running as legacy
applications while functionality stays synchronized and integrated using API
communications between the legacy and modernized application. The legacy
monolith application and the separated microservices share the modernized cloud

native database and take advantage of different schemas and permissions fo manage
module ownership of the data over time.

Figure 4.2.2-4. Example: Co-Existing AR Microservices and Legacy Applications.

Implementing incremental change evolution necessitates careful planning and
execution. This confirms the prevention of conflicts between business and technical
changes, while enabling their harmonious coexistence. While reviewing the plan for
new business functionality and identifying the domain areas we are modularizing, we
establish the capacity for evolved services to operate completely independently from
the legacy application. To initiate the process, we begin by constructing a strong
foundational architecture through the design and implementation of core services.
These services encompass vital application architecture elements such as exception
handling, application logging and tracing, error management, configuration
management, and security. These components serve as the building blocks upon which
developers construct other elements within the new architecture. We create other
utility functions (e.g., cache management, date management, data validations) that
can be used across the microservices. The functional microservices leverage this
building framework to completely decouple themselves from the monolith throughout
the SDLC.

Next, we apply the Strangler Fig pattern by lifting the relevant code for a module out of
the monolith to build a standalone service, infroducing APIs to access the service and
then evolving the data access layer to improve the structure of the database. Because
we did cloud native database migration first, we have a thorough understanding of the
database tables and relationships and know where we will need to infroduce APIs in
the monolith. We also understand where the logical responsibilities for data
management and ownership correlate to specific modules. This decreases risk during
the evolution because we do not need make business code changes. This initial
independent service is tested for parity with the previous release, through the
infegration with the remaining monolith executable.

In parallel, a different team takes the same starting code base and makes the
functional changes necessary to create new features needed by the business. This
approach allows each team to make and test their changes on a stable base before
combining the changes and retesting.

This implementation requires tight communication and collaboration across tfeams,
disciplined change identification and grouping/sequencing of like changes which are

CALSAWS M&O SERVICES RFP #01-2022
Volume 1B — M&E Business Proposal, Part 1

constantly implemented throughout each sprint. Continuous integration of technical
changes allows teams to see working software, not just designs.

This ongoing process is demonstrated in Figure 4.2.2-5 below.

IDENTIFY SEQUENCE

« Understand existing » Categorize Application
pipeline of Components
Legacy CR’s
- Sequence component

» Shape the Roadmap modernization to
for Application occur prior to CR
Modernization changes

Collaborate

with CalSAWS -
CONTINOUS INTEGRATION Define the Plan BUILD

« Continuous integration
and Deployment

» Develop in parallel
and independent

- Standard DevOps code streams

practices to create
automated builds

« Develop in sequence,
merge and validate

Figure 4.2.2-5. CalSAWS Enhancement Collaboration Plan.

The next key to this process is the parallel change management that we describe in the
next section.

networks, and the evolved feature modules, we e Post validation,
apply the second pillar: Parallel Change ' microservices are

4.2.2.2 Integrating with Existing m
Technologies and Networks >« Application evolution
We align with the Consortium’s requirement to - work is planned
adhere to the SCR process and regularly deliver N considering the SCRs
SCRs in parallel to CalSAWSEN activities. We =~ prioritize_d by the
evaluate cloud services and open-source software, - Consortium.
as well as existing tools and service, to support ot Impacted application
integration. This includes shared services & components are

. . o - identified, sequenced,
technologies for accurate logging, monitoring, T and developed as
alerting, and reporfing across platforms. To manage microservices in a
integration between existing technologies and (T separate code stream.

C

Management. merged info the legacy
o code stream.
. " e Asingle integrated
Ag. plying Parallel Change Management e
(Pillar 2) per release calendar.

Parallel change management enables M&E work to

confinue while minimizing the impact of CalSAWSEN application evolution activities.
Collaboration between teams, change management grouping and sequencing of
similar changes, and isolation of features are facets of this pillar. Our holistic view of
parallel change management considers facets of an application: the source code, the

Deloitte 2023 Understanding and Approach to M&E Services Section 4 Page 4-5

CALSAWS M&O SERVICES RFP #01-2022
Volume 1B — M&E Business Proposal, Part 1

database, and the underlying infrastructure (HW, SW and tools). The key tenet here is
maintaining 2 parallel sets of environments, code, and database to allow technical
changes and business functional changes to run in parallel and then merge successfully
for CalSAWS' benefit. This approach promotes stability for both coding activities and
allows the consorfium to make release decisions without compromising quality. Stable
code branches consistently exist for both sets of work and for the combined changes
after the merge is complete. This is also particularly important when a change may
require significant partner testing that may impact when a change can be released.
Below, we provide a description with how we manage the three facets of parallel
change management — Source Code, Database, and Infrastructure.

Parallel Change Management: Source Code

Parallel change management controls code changes explicitly by leveraging two
code streams: a dedicated legacy code stream for legacy code and database, and a
CalSAWSEN serverless code stream modernized code and migrated database. Figure
4.2.2-6 demonstrates how the legacy code stream supports planned changes (e.g.,
enhancements, patches). In the example, CalSAWSEN creates the new microservice
Application Registration (MS_AR) and APIs. At the same time, the team working on the
legacy code adds new functionality to the Eligibility module.

After we have successfully completed and tested the new business changes (e.g., in
the Eligibility Module) and regression tested the modernized application services (e.g.,
the new Application Registration microservice), we start through the merge process. This
process includes changing the monolith code to call the new microservice, and then
merging the new microservice code into the same branch as the updated monolith.
The monolith begins to remove parts of its own code by calling the new CalSAWSEN AR
module through an API. At this point the data is logically owned by the microservice
and only accessed through the APIL. The new Application Registration service represents
an independent business domain that can change and evolve independently with its
micro-frontend and its microservice backend.

‘> @ L @

Legacy Code Branch

A

Legacy SCR Legacy_AR| | CM Eligibility -Legacy ((j:ode and Legacy System
Pipeline - Annual hisdtfetnadiapehhund - AR (Disabled
Planning Process gxnst W"h continuous & decoupled)

: MS AR integration and «AR—
Identify - API Calls development : :

OppiC(]ﬁon X Microservice

i «Singled Integrated - Case Mgmt.
Sl el release into

relevant to SCR’s

prioritized for
upcoming
Releases

&

Life and shift AR code
into microservice
hosted on serveriess
containers

production as per
scheduled Release
calendar

[Manual Merge |

- Eligibility

Microservice

Code
AR (Enabled)

MS_AR

New Microservice
Code

CalSAWSCN Code Branch

Figure 4.2.2-4. Example: Parallel Change Management between Legacy Code and

CalSAWSEN,

Deloitte 2023

Understanding and Approach to M&E Services Section 4 Page 4-6

We have a proven database change management process that enables us to
manage parallel databases (one for legacy environment, one for the modernized
environment). Database changes are completed through database scripts that are
also checked into the source code repository. The database changes are correlated to
specific code versions and tagged into the same baselines and releases. For example,
when we embark on the technology modernization journey there will be three parallel
streams of work: 1) CalSAWS application modernization into microservices, 2) CalSAWS
DB modernization, and 3) CalSAWS functional changes. Our processes merges
database changes across the three streams at the right time to allow the application to
function smoothly without disruption.

We use logical separation through the evolution process to reduce the need for data
replication. When there is a database change needed for a specific phase of the
evolution, changes are thoroughly tested with the merged code to verify that data
access has been isolated using the data access layer. The industry patterns we use to
mitigate the impact of this kind of change includes Natural Keys, Literal Keys,
Hexagonal, Facade, Anti-Corruption, and CQRS patterns. Which pattern is used
depends on the business domain object that is being addressed, its rate of change, the
module responsible for it and the business requirements.

While the code and database evolve, the underlying infrastructure will also evolve to
take advantage of more cloud services and simplified, lighter weight tools. There will be
upgrades and patches that get applied to legacy infrastructure, and infrastructure
changes that will get applied on the new technology modernization environment. We
work with the infrastructure vendor from architecture through design to create the
modernized and evolved cloud infrastructure architecture jointly to support the
application evolution. Making sure the infrastructure changes are clearly documented
and requested, correctly applied and migrated across environments requires close
coordination and ongoing collaboration with the infrastructure vendor. Changes will
also include security changes as we build and apply zero-trust principles.

We work collaboratively with the infrastructure vendor to make sure the infrastructure
changes are sequenced with the corresponding code changes (as applicable) and
application release. For example, when the implementation of database
modernization is underway, the required legacy DB upgrades would only be applicable
to environments that do not have the new upgraded DB code and are scheduled for
releases prior to database migration or evolution. This includes upgrading production
legacy database as well for any patches that require remediation (e.g., security
vulnerability patch). On the flip side, a patch for the evolved DB would only be applied
to environments that have evolved DB code or environments slated for later releases
after the database evolution. This type of patch will go to PROD, with the evolved DB
release.

As we evolve the code, database, and infrastructure we will account for the
integration considerations included in Table 4.2.2-1.

CALSAWS M&O SERVICES RFP #01-2022

Volume 1B — M&E Business Proposal, Part 1

Services Technology and Network Considerations

Interfaces Existing inbound and outbound interface end points, including virtual private cloud
(VPC) peering for RESTful APIs, WebSocket APIs, and SFTP, are updated in lower
environments, tested, and validated before updating in production.

Integrations VPC end points for integrations are updated and tested before the cutover.

Logging The logging from application services is aggregated to the centralized log files by
leveraging existing logging tools (e.g., CloudWatch, Fluentd).

Monitoring CalSAWS APIs are integrated with CloudWatch to monitor and alert on any
application and infrastructure issues.

Reporting Tools such as Grafana, Kibana, Qlik, or AWS native tools are leveraged.

Security Authentication and Authorization through ForgeRock; security monitoring through

Splunk; and network security through AWS Network Firewall, CloudFront, WAF,
NACLs, Security Groups, etc. are integrated to protect CalSAWS from threats.

Table 4.2.2-1. Shared Services Integration Options.

4.2.2.3 Testing Changes
Applying Validation Strategy (Pillar 3)

We use a four-point validation strategy, highlighted in Figure 4.2.2-7. The first applied to
the data migration, with the remaining points being applied iteratively throughout the
application / architecture evolution journey. Validation is successful if no data loss is
sustained during migration, and application functionality remains unimpaired.

N\‘,ig{ﬂ:go?,ah Data Matching Parallel Validation .:

* Vdlidate migrated
database schema
through end-to-end
automated tests
verifying correct
insertion data

» Complete automated
results comparison
between the Migrated
and Legacy
databases after
executing the same
automated functional
test thatchange
existing case data

« Compare data
migration/conversion
between the Legacy
and Migrated
databases using our
avtomated compare
utility for all tables and
columns.

Repeat migration and
comparison cycles
until all data
discrepancies are
rectified

Understanding and Approach to M&E Services

« Create Automated
functional test scripts
for Case actions of
Intake/Reporta
Change/Renewadl,
etc. across all
programs

Execute parallel tests
with the application
poinfing to Migrated
and Legacy
databases.

Use automated utilities
fo screen scrape data
elements and
compare application
screens, and resolve
discrepancies

~r -
SON_Cdioay

Figure 4.2.2-7. Validating and Testing the Data and Modules.

Functional Testing

Al

* Program-based End to
End functional testing

* Black box testing
of Application
functionality fo
validate functionality
stays intact after
migrating the
database

Section 4 Page 4-8

CALSAWS M&O SERVICES RFP #01-2022
Volume 1B — M&E Business Proposal, Part 1

A robust validation strategy enables the Consortium to discover application challenges
early during database migration and application evolution activities. For instance, we
uncover non-standard queries, hardcoded data, or undocumented business rules. We
have created a set of leading practices in the four-point validation that improve the
automated database migrations and evolutions from 70% accuracy to 95% accuracy,
leaving only 5% for manual intervention. These processes include the generation of
complete data validation test scripts to verify the data migration or change resulis. Our
team leverages GenAl to accelerate the creation of test scripts and also enhance the
overall coverage of condifions to be confirmed.

While the four-point validation helps uncover issues and confirms system behavior both
pre and post technical changes, it is imperative that the validation is performed ahead
of fime to minimize any disruption to business-critical changes. To isolate and validate
technical changes from the business changes we perform 3 cycles of validation. Each
validation cycle includes a full gamut of testing coverage including functional testing,
security testing, performance testing and regression testing.

Figure 4.2.2-8 demonstrates the key features of each of the testing cycles.

CYCLE O

Validate
Technical Changes

Goal: Validate technical
changes separately before
merging with functional
changes.

Activities: 4-point
validation, performance
testing and security testing

Benefits: This process
identifies and addresses
potential technology
upgrade issues, preventing
them from affecting
scheduled business
changes.

CHNICINER

Validate Business
Functional Changes

Goal: Validate business
changes separately before
merging with technical
changes, concurrently with
cycle 0.

Activities: Business
validation, regression
testing and security testing

Benefits: This cycle
identifies business issues
and enables their isolated
resolution and validation
before technical changes.

SV EILE &

Validate
Combined Changes

Goal: Validate combined
business and technical
changes in arelease
environment mirroring the
configuration and code
infended for PROD release.

Activities: 4-point
validation, performance
validation, regression
testing, partner testing and
security tfesting

Benefits: This cycle
validates compatibility
between technical and
business changes, ensuring
they collectively achieve
business and technology
goals.

Figure 4.2.2-8. Vdlidation Strategy Testing Cycle Key Features.

By applying this validation approach to testing, we showcase the synchronized
functionality of the code, database, and infrastructure, resulting in an enhanced and
adaptable system. These methods have elevated the system's quality and are
confinuously tracked via established quality and performance KPIs. These KPIs are

Understanding and Approach to |

gathered with each incremental release throughout the year and encompass metrics
spanning startup times to response performance of application modules.

4.2.2.4 Other Factors Including Security Controls
Security controls that include data security, network security, and access controls are
implemented to mitigate security risks and threats. These include controls such as:

« Encrypting data in-transit and in-use with a minimum Transport Layer Security (TLS)
v1.2 and Advanced Encryption Standards (AES) cipher suites using only trusted digital
certificates to enable secure communication between the assefs.

» Encrypting data at-rest by the selected AWS database services at the disk level using
Federal Information Processing Standards (FIPS) 140-2 guidelines.

» Disabling open ports and blocking unsecure ports to minimize the threat surface area.

» Logging and monitoring database activities for suspicious activity (e.g., repeated
invalid login attempts, database instance creations, command errors/exceptions).

» Securing customer managed keys (CMK) with AWS Key Management Service (KMS)
with a key management lifecycle to monitor and enforce separation of duties.

« Configuring security groups using the principle of least privilege.

» Segregating data between production and non-production databases with controls
applicable to an operations copy of the production database.

« Implementing data retention and archive based on Consortium security policies.

